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Fractal dimension of collision cascades
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The geometrical structure of the vacancy distribution in collision cascades is studied using Monte Carlo
simulations. Based on a Flory—de Gennes-type approach, a relation of the fractal dimension, the self-similarity
dimension, and the dimension of the embedding space is established. It is shown that, varying the parameter of
the interaction potential, a structural transition takes place in the cascade from an open branching structure to
a space-filling one. Based on the results the spike condition of Cheng, Nicolet, and JGRhgsenRev. Lett.

58, 2083(1987)] is revisited.[S1063-651X97)12602-3

PACS numbegs): 05.90+m

[. INTRODUCTION as an average cascade for the case of an inverse-power po-
tential of the type

Collision cascades develop in condensed matter as a con-
sequence of irradiation with energetic beams of particles. V(r)=G(mr-¥m o<ms=1. (1)
The bombarding particles transfer their kinetic energy in se-
ries of collisions with the target atoms and the energizedlt was shown that the self-similarity dimension of the deter-
recoiling atoms generate further recoils in their own slowing-ministic tree Do(m)=1/2m in d=3 embedding Euclidean
down process. The result of this energy sharing process is $pace. It depends solely on the parameterf the interaction
collision cascade. potential. To test the predictions of this model, MC simula-

To study the geometrical structure of collision cascadesgions were performed. It was found that the measyM@)
there are two possible viewpoints: On the one hand, the cas-
cade can be considered as a treelike geometrical object,
which is composed of the trajectories of the moving particles
and points where the collisions occurrfgd2]. Recently we
showed that in this consideration the cascade-tree exhibits
multiscaling and multifractality, which is a direct conse-
guence of the underlying multiplicative process of the cas-
cade mechanisiB]. (b)

On the other hand, the cascade can be treated as a
branched aggregate of the vacancies created in sequential
collisions during the cascade evolution. This vacancy distri-
bution in the target is bounded by the interstitials, making
this damaged region in the solid well defined. Randomly
branched aggregates occur in many physical systems such as
branched polymers, the sol-gel transition, percolation, turbu-
lence, nucleation, the formation of smoke particles, and elec-
tric breakdown. The common feature of these objects is that
they all show a strong degree of self-similarigj. From the
geometrical point of view the structure of the vacancy distri-
bution in the collision cascades is analogous to the structure (a)
of randomly branched aggregates.

Recently vacancy distribution in collision cascades has
been investigated from the viewpoint of fractal geometry by
means of analytical calculations and of Monte CadC)
simulations in the framework of the binary collision approxi-
mation (BCA). These investigations have been extended to
the study of the self-similarity properties of the cascade
[5,6], to the determination of its fractal dimension for differ-
ent interaction potential§1-3,7,§, and to the study of
cascade-subcascade transition and sffi&g8}. A simple de- FIG. 1. Deterministic cascade trees up to ten generation steps
terministic fractal-tree modefsee Fig. 1 was proposedS5]  with different similarity ratiosy. (y is the ratio of two successive

branches in the tree(a) y=0.6.(b) y=0.7. One can observe that
for increasingy (decreasingn) the overlap of different branches is
*Electronic address: feri@dtp.atomki.hu increasing.
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fractal dimensionD(m) of the vacancy distribution is in tween 0 andns/2. The geometrical model of self-ion colli-
good agreement with the self-similarity dimensiBr(m) sional cascades was established by Cheng, Nicolet, and
only in the rangem>1%. If m<3%, thenD(m)<Dy(m), and Johnson as an average cascade for the case of the interaction
the difference of these two dimensions increasemagpes Potential Eq(1). This model is a deterministic one, which is
to zero[1,2,7,8. This so called nonlinearity of damage pro- constructed by allowing the single valaé4 of the scattering
duction is due to the overlapping effect of subcascades. angle solely for all the collisional generatio(fsig. 1). This

To make this situation more clear we performed systemway a so-called fractal tree is constructed which is rigorously
atic MC studies ind=2 (2d) andd=3 (3d) embedding self-similar up to the scale of the entire system, with the
dimensions in a wide range of the parameter of the potentiaimilarity ratio y being the ratio of two successive branches
m. In the present paper we clarify the connection of thein the tree. This construction is based on the fact that in the
measured fractal dimensiob of the cascade, the self- hard sphere approximation of the scattering process the ex-
similarity dimensionD, of the deterministic model, and the pectation value of the particle energcattered and recoilgd

Euclidean dimension of the embedding space. Based on ajs given by E=1/2E (which belongs to ther/4 scattering
Flory—de Gennes-type mean-field approd®il0] for the  anglg and the mean free-flight path,, between two suc-
fractal dimension, we have established an explicit relation otessive collisions has the simple energy dependence
the typeD=D(Dy,d). The predictions of our expression | =KE?™ (K is energy independentThus the average
D=D(Dy,d) is in a good agreement with the fractal dimen- cascade might be substituted by a deterministic one, with the
sion extracted from the MC data. similarity ratio y=(1/2)*™ being the ratio of two successive
We note that there are differences between the reasons gfanches at the scattering angté4 [5].
the appllcablllty of the F|OI’y — de Gennes al’guments in the Let us Suppose thaﬂ(r) boxes Of Size’ are required to
study of cascades and in the study of the other type Ofover this deterministic tree in trikdimensional embedding
branching aggregates. In the case of polymers and d|ffu3|orgpace_ Changing the scale of the observationtpN(yr)

limited aggregates, the excluded volume effect as a geqyoxes are needed to cover the object. Because of the self-
metrical constraint causes geometrical correlations in th@jmijlarity we obtain

systems, and this can affect the actual structure, increasing
the radius of gyration and decreasing the fractal dimension N(yr)=2N(r)=7y"PoN(r). 2)
[9-15]. But in the simulation of collision cascades the target

was supposed to be amorphous; furthermore, there was nRghis means thaN(r) is a homogeneous function ofwith
restriction for the distance of the vacancies belonging to difyhe gegree of homogeneity D, where Dy=In2/In(1/y).
ferent branches of the cascade, and the vacancies forming tIDeO is called self-similarity dimensiofi5]. Substituting the

cascade were supposed to be pointlike objects. It follows thaj,) e of y in the 3 case we obtaiD,=1/2m, depending
there was no excluded volume effect included in our Sim“'solely on the parameter of the interaction po,tential.

lations. In the cascades geometrical correlations arise from riom the above argument it follows that the number of
other reasons, namely, because of the overlapping of the SuE’bvering boxes varies as 2o with the resolutiorr, and the

cascades. _ _number of elements of the object within a sphere of radius
Recently, based on a Flory-type theory, Family pointedy st scale agPo. The crucial point to be stressed here is

out [11] that the random branching fractals can have onlyinat the above treatment, leading to the self-similarity dimen-

three possible equilibrium shapes in the presence of geQjon considers independently all the elements of the cascade,

metrical correlation, and he classified these opjects intq ®%But neglects the geometrical correlations, and the possible
tended, compensated, and collapsed states. It is shown in tfy

) 8Ferlapping of different parts of the cascade. That is why for
present paper that decreasing the parameter of the potential Lo .

m from 1 toward 0, the system goes through these states &f =8 the self-similarity dimensio, can even exceed the
the evolution. Thus varyingn as a control parameter a tran- dimension of the embedding spadeand th?/Dr;adlus of gy-
sition takes place in the cascade from an open-branchinfftion Ry calculated from the relatioRy~N""c underesti-

structure toward a compact shape, the fractal dimension b&hates the actual value & for a givenN. o

ing equal to the dimension of the embedding space. We studlgd the str_ucturg of the vacancy distribution of_
The outline of the remainder of this paper is as follows. Inc@scades using MC simulation, so we had random geometri-

Sec. I, the construction of the deterministic cascade modef@l objects. In this case the fractal dimensinis defined

the concept of the self-similarity dimension and fractal di_throu'gh the scaling behavior of the total number of the va-

mension is briefly reviewed, and numerical results are preQ"D‘nC'gg\l as a function of the radius of gyrati@t, , namely,

sented for the fractal dimension of the vacancy distributionN~Ry The radius of gyration is a measure of the linear

We compare the fractal dimensions obtained numerically t&xtension of the cascade, defined as the averaged distance of

the corresponding self-similarity dimensions. To understandhe vacancy pairs;; in the cascade,

the reason of the discrepancy between them in Sec. Ill. a \
Flory—de Gennes-type mean-field approach is established, ) 2 )
and at the end the spike condition of RE] is revisited. Rv= N(N—1) ;, Fij - 3

II. SELF-SIMILARITY DIMENSION,

FRACTAL DIMENSION The number of vacancies and the radius of gyration are func-

tions of the bombarding energy. That is why we performed
In a self-ion collision cascade, where the projectile andhumerical simulations over a wide range of the bombarding
the target atoms are the same, the scattering angle falls benergy for eactn value to vary the number of vacancies for
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FIG. 2. Simulated cascades in thel Znodel at two different
values of the parameten, () m=0.5 and(b) m=0.85. The arrow
indicates the point where the bombarding particle penetrated the
solid, and the fat line shows its path. The solid is supposed to be
amorphous and infinite, thus the backscattered particl€a) ioan-
not leave the solid. For decreasingthe structure of the cascade
becomes richer. Since the number of subbranches is increasing,
they tend to overlap each other.

FIG. 3. Comparison of the fractal dimensi@(m) extracted
from the MC data to the self-similarity dimensiddy(m). The
the determination of the fractal dimension. The fractal di-theoretical calculations of the fractal dimension in the extended Eqg.
mensionD was extracted from the form (8) and compensated E) states are also shown.
N~(Ry)®, 4) The comparison of the fractal dimensi@r(m) extracted
from the numerical data to the self-similarity dimension
where the brackets - - ) denote the average over many cas-Do(m) can be seen in Fig. 3 ford2and 3. In 2d there is

cades containing the same number of vacanidies
Numerical simulations were performed il2and 3 in a
wide range of the parameten. In 3d for the case of the

E is the kinetic energy of the moving particle aiidis the
transferred energy during the scattering process.dm2

dimension is different from the three dimensional one,
namely, Dy=1/m. Using this toy model in & we could
verify our Flory—de Gennes-type theory, which was origi-

agreement betwedd(m) andDy(m)=1/m only in the limit
m—1; for decreasingn the deviation of the two functions is
increasing. The curve dP(m) is composed of two distinct
interaction potential Eq(1) the scattering cross section smooth parts in then intervals 0.6<m<1 and m<0.52,
do=CE ™T 1 ™dT was used for the simulation, where with a transient regime in between, 05&<0.6.

The 3d case is more complicate®.(m) is composed of
three distinct regimes. Fan>1/3 there is good agreement
constructed a toy model with the scattering cross sectiobetweenD(m) and Dy(m)=1/2m. For m<1/3 there is an
do=KE ™2T-1"™24T, In all the simulations particles increasing deviation between the two functions for decreas-

were stopped when their kinetic energy was smaller than $ng m. In the m<} region one can distinguish two further

eV. For the 2| cascade model one can also construct a subsmooth parts ob (m) in the intervals ofm 0.2<m< 1/3 and
stituting deterministic fractal model, but its self-similarity m<0.18, with a sharp transition in the vicinity afi=0.19.

Ill. FLORY —DE GENNES TYPE MEAN-FIELD

nally derived for the three-dimensional case. Figure 2 shows

examples of simulated cascades id. Zor further details

work of the BCA model, see Reff17,18.

APPROACH

If we want to work out a mean-field approach for collision
about the MC simulation of collision cascades in the frame-cascades, we face two problems: First, similarly to the case
of diffusion-limited aggregatiof12—15, there exists no free
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energy in the conventional meaning of the term—there exists The Flory—de Gennes approach is based on finding the

no attractive or repulsive interaction between the vacanciegiost probable conformation of an object from an approxi-

forming the cascade. Nevertheless, this is not a real problenmate free energ¥(R,N). The free energy is a sum of the

since there exists a well-defined probability for the formation“elastic” and “repulsive” terms[11]. The elastic free en-

of any cascade of any given configuration which can beergy (i-e., the entropic terintends to make the cluster radius

found by many repetitions of the cascade process, and, $dv €qual to its radiusyo in the ideal state where there are

long as the asymptotitl— properties of a single cascade NO self-intersections. The elastic free energy is written

are the same as this ensemble average, the use of a Flory—de

Gennes argument should be valid. The free energy =

F(R,N), which we estimate, is in fact to within a constant el

term simply the negative of the logarithm of the total prob-

ability P(R,N) for the formation of any cascade Wfvacan- ~ This term is assumed to be the same for any random struc-

cies with radius of gyratiomR, or P(R,N)~exg —F(RN)]. ture [11]. The repulsive part of the free energy takes into
Furthermore, for a Flory—de Gennes-type argument, th@ccount the geometrical correlations caused by self-

essential properties of the cascade itself are required. Thus @tersections. It is proportional to the number of particle-

first we have to consider the basic properties of the formatiomarticle contacts, i.eR§pp, wherep=N/RY; is the density

of a collision cascade. of the objec{11]. Thus for the repulsive part we obtain
Basically, the cascade is composed of subcascades. The

subcascades are generated by the recoiled atoms. If we vary E —A ®)

the parameter of the potential from one toward zero, the rep R_ﬁ

probability of displacement will be increased, and the sub-

cascades will contain more and more vacancies. Thus for @rhis is a mean-field-type approach in the sense that the el-

certain value ofm there will be so many vacancies in the ements of the fractal are spread over a volURfe neglect-

structure that the subcascades tend to overlap each other. Qg the possible density fluctuationgt the beginning let us

idea is that the reason for the discrepancy between the meguppose thaf is constant, and independent f Minimiz-
sured fractal dimension and the self-similarity dimension ising the total free energ§,

that there are geometrical correlations in the structure due to

RY

RNO

®)

N2

the overlapping of the subcascades, and this is not taken into Rﬁ N2
account in the derivation of the self-similarity dimension. F=FetFrep=mz TARd (7)
NO N

The notion of the upper critical dimension used in the
s';udy qf geometrical structures. is analogous to th(_a_critic%vith respect taRy, keepingRyo andN fixed, and using the
d'mer?S'O” of the thermodynampal sy;tems. The cr|t|ca| dI'definition of the fractal dimensioN~Rﬁ, we obtain
mensiond.=4 is the Euclidean dimension above which ther-
mal correlations in a critical system become unimportant, 24
and the critical exponents take their mean-field values. For D=—©7—.
collision cascades the upper critical dimensénis the Eu- 2+(2/Do)

clidean dimension above which the overlapping effect is ., . . . . .
negligible, and the fractal dimension is equal to the self§Thls expression oD has two important features. First, it

similarity dimensionD=D,. strongly depends on the embedding dimensioand, sec-

. . . .ond, if d=2D,, we obtainD=D,, in agreement with our
TheD E\gerage density of a nonintersecting cascade Igbove upper critical dimensioty,= 2D, . If d>d,=(2Dy)
po~Ryg - If some parts of the cascade overlap each othe

: X ; the repulsive part ik is negligible, and the elastic part de-
the  total ZD”HTber of intersection points would Dbe termines the structure leading =D, . In the Family clas-
Ripopo~Ry,® °; this would be the number of particle- sification scheme this state of random fractals is called an
particle contacts. It follows that the upper critical dimensionextended state, because this is the most ramified possible
is dy,=2D, for a cascade having a self-similarity dimension conformation of a random fractal in the presence of geo-
Do. If d>d,=2Dg the self-intersections are negligible. metrical correlations. In Eq(8), D has m dependence
Now one can explain the deviation bf andD observed in  throughD,. In Fig. 3 one can see that the predicted curve of
Fig. 3 in 2d and 3. The self-similarity dimensioD, de-  the fractal dimension in the extended state @is in good
pends onm, which is whyd, also hasm dependence. In agreement with the measured fractal dimension ihfar

3d, while m is greater tha, the upper critical dimension is 0.6<m and in & for 0.2<m<1/3.

smaller than 3, i.ed,<d. The simulations showed that in If we decreasen in the extended state, we reach a point
this m regionD~D,, as we expect from the above argu- where the multiple overlapping of the subcascades occurs,
ments. In the Family classification scheme this state of ranleading to a more compact shape. It can be simply shown
dom fractals, when geometrical correlations are negligible, ishat for the object having self-similarity dimensidy, the

called the ideal state. Im<3, thend,>d and the self- critical dimension of the multiple overlappind]=3D,. If
intersections become important, resultingbr<Dg. In 2d the embedding dimensiod is smaller than the critical di-
we obtain d,=2Dy=d=2; there is equality solely for mension of the multiple overlapping, the presence of the
m=1 (ideal stat¢ . Thus the overlap has a dominating role; multiply overlapped regions can increase the fractal dimen-
there is agreement betwe&n and D, only in the limiting  sionD, and we have to modify our argument leading to Eq.
case ofm=1, but form<1 we see always deviation. (8). Let us suppose tha depends oiN asA~N"*. It can

®
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be interpreted as a kind of screening of the particle-particléo reconsider the above condition. The dengitgf the dis-
“repulsion,” which is why, in the Family classification placed atomsdN, with respect to the total number of target
scheme, this state of random fractals is called a compensatedomsN, in the cascade region is

state. The value of can be determined from the requirement

that the repulsive part of the free energy should be negligible _ &NRD(m)—d~ NLD(m)—d]/D(m) (10)

if d>d['. Forx we obtainDy(2—x)=d]', and substituting P N, ¢

di'=3D, we havex=0.5. For the fractal dimension, using

. whereD(m) is our MC measured fractal dimension, aRd
the same procedure as above, we obtain

denotes the radius of gyration. It has been shown above that
the measured fractal dimensions have a so called transient
24 regime in the vicinity ofm=0.18 and 0.52 in 8 and A,
9) respectively. These regimes are characterized by the fast in-
crease ofD(m), which entails that at a fixedl. value p
rapidly increases, and the cascade volume is a rapidly de-

gives rise to increment of the fractal dimension comparing tg-reasing function ofn, |nd|cz_1t|ng a Kind of C(_)Ilapse of the
the extended state. Figure 3 shows the comparison of th%ascade tree. Thus we can identify these points as the occur-

f | di ion in th t he MC f gnce of high density spikes. Opr charac?erismis are very
Jﬁ:]:;a;]sciiéngsensggolg aegfg(?mp:r:lsaifd jttg eer\jg dt E;d Cmrr acta{:lose to those of Ref5]. The difference is that the fractal

m<0.52 and in @ for m<0.18. For decreasing in the dimension still remains smaller than the embedding dimen-

compensated state, the fractal dimension increases up to the’ D~2.41in 3d andD~1.6 in .
dimension of the embedding space, resulting in a space-
filing compact shape of the cascade.

The overlap of subcascades play an important role in the |In the present paper we studied the geometrical structure
creation of small amorphous zones in the target. An amorof the vacancy distribution in collision cascades. Based on a
phous zone is formed when either the deposited energy deFory—de Gennes-type theory for the fractal dimension, we
sity or the local fractional damage exceeds a critical valueestablished an explicit relation of the tyfe=D (D, ,d). It
This separates the thermal and displacement spike concepigas shown that the parameter of the interaction potential
An unexpected nonlinear dependence of the damage on thgays the role of a control parameter. For decreasing
deposited energy was found experimentally; see, e.g., Refransition takes place in the cascade from an open branching
[16]. The experimental data could be well explained with thestructure, through the extended and compensated states to-
assumption of cascade overlap. ward the space-filling compact shape. The predictions of our

At high enough recoil density it becomes possible that thgormulas are in good agreement with the MC results.
moving particles can collide with each other, and not only |t was reported by several authors in the literature that,
with the stationary target atoms. These regions are callegue to the change of during the cascade evolution, an
thermal spikes, where the majority of atoms are temporarilyactual collision cascade may be composed of subsets with
in motion, glVIng rise to thermalization. This may occur at |oca||y different fractal dimensions(SQE, e.g., Refs.
the final stage of the cascade evolution. In an actual cascagig 2 5,7,8). To analyze structures which consist of a hierar-
the parametem of the effective interaction potential is a chy of subset$density fluctuationswith a spectrum of frac-
function of the kinetic energy of the moving particle; e.g., in tal dimensions thégeometrical multifractality gives a natu-
the keV energy rangm= 3 is a fair approximation, while in ral framework[19]. Further investigations in this direction

the lower eV rangen<1. Cheng, Nicolet, and Johnson pro- &€ needed.

posed a condition for the thermal spike formation based on

the fractal nature of collision cascades. That is, a thermal

spike is formed when the self-similarity dimensibg of the We would like to thank Professor Y. T. Cheng for sending

cascade reaches the dimension of the embedding sif@de  us reprints of his work. The authors are very grateful to K.

In the above & and 3 models, this occurs ah=0.5 and  Sailer and S. Schwarzer for helpful discussions and a critical

0.1666, respectively. reading of the manuscript. This work was supported by
Since the self-similarity dimensioDy(m) and the fractal OTKA T-013952. F.K. was partly supported by the Univer-

dimensionD (m) of the cascade differ considerably, we havesitas Foundation of Kossuth Lajos University.

D= X+ @by’

which depends or. The appearance afin the denominator

IV. CONCLUSION AND OUTLOOK
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