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Fractal dimension of collision cascades
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The geometrical structure of the vacancy distribution in collision cascades is studied using Monte Carlo
simulations. Based on a Flory–de Gennes-type approach, a relation of the fractal dimension, the self-similarity
dimension, and the dimension of the embedding space is established. It is shown that, varying the parameter of
the interaction potential, a structural transition takes place in the cascade from an open branching structure to
a space-filling one. Based on the results the spike condition of Cheng, Nicolet, and Johnson@Phys. Rev. Lett.
58, 2083~1987!# is revisited.@S1063-651X~97!12602-2#

PACS number~s!: 05.90.1m
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I. INTRODUCTION

Collision cascades develop in condensed matter as a
sequence of irradiation with energetic beams of partic
The bombarding particles transfer their kinetic energy in
ries of collisions with the target atoms and the energiz
recoiling atoms generate further recoils in their own slowin
down process. The result of this energy sharing process
collision cascade.

To study the geometrical structure of collision casca
there are two possible viewpoints: On the one hand, the
cade can be considered as a treelike geometrical ob
which is composed of the trajectories of the moving partic
and points where the collisions occurred@1,2#. Recently we
showed that in this consideration the cascade-tree exh
multiscaling and multifractality, which is a direct cons
quence of the underlying multiplicative process of the c
cade mechanism@3#.

On the other hand, the cascade can be treated
branched aggregate of the vacancies created in seque
collisions during the cascade evolution. This vacancy dis
bution in the target is bounded by the interstitials, mak
this damaged region in the solid well defined. Random
branched aggregates occur in many physical systems su
branched polymers, the sol-gel transition, percolation, tur
lence, nucleation, the formation of smoke particles, and e
tric breakdown. The common feature of these objects is
they all show a strong degree of self-similarity@4#. From the
geometrical point of view the structure of the vacancy dis
bution in the collision cascades is analogous to the struc
of randomly branched aggregates.

Recently vacancy distribution in collision cascades h
been investigated from the viewpoint of fractal geometry
means of analytical calculations and of Monte Carlo~MC!
simulations in the framework of the binary collision approx
mation ~BCA!. These investigations have been extended
the study of the self-similarity properties of the casca
@5,6#, to the determination of its fractal dimension for diffe
ent interaction potentials@1–3,7,8#, and to the study of
cascade-subcascade transition and spikes@5,8#. A simple de-
terministic fractal-tree model~see Fig. 1! was proposed@5#
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as an average cascade for the case of an inverse-powe
tential of the type

V~r !5G~m!r21/m, 0,m<1. ~1!

It was shown that the self-similarity dimension of the det
ministic treeD0(m)51/2m in d53 embedding Euclidean
space. It depends solely on the parameterm of the interaction
potential. To test the predictions of this model, MC simu
tions were performed. It was found that the measured~MC!

FIG. 1. Deterministic cascade trees up to ten generation s
with different similarity ratiosg. (g is the ratio of two successive
branches in the tree.! ~a! g50.6. ~b! g50.7. One can observe tha
for increasingg ~decreasingm) the overlap of different branches i
increasing.
1508 © 1997 The American Physical Society
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55 1509FRACTAL DIMENSION OF COLLISION CASCADES
fractal dimensionD(m) of the vacancy distribution is in
good agreement with the self-similarity dimensionD0(m)
only in the rangem. 1

3 . If m< 1
3 , thenD(m),D0(m), and

the difference of these two dimensions increases asm goes
to zero@1,2,7,8#. This so called nonlinearity of damage pr
duction is due to the overlapping effect of subcascades.

To make this situation more clear we performed syste
atic MC studies ind52 (2d) and d53 (3d) embedding
dimensions in a wide range of the parameter of the poten
m. In the present paper we clarify the connection of t
measured fractal dimensionD of the cascade, the self
similarity dimensionD0 of the deterministic model, and th
Euclidean dimensiond of the embedding space. Based on
Flory–de Gennes-type mean-field approach@9,10# for the
fractal dimension, we have established an explicit relation
the typeD5D(D0 ,d). The predictions of our expressio
D5D(D0 ,d) is in a good agreement with the fractal dime
sion extracted from the MC data.

We note that there are differences between the reason
the applicability of the Flory – de Gennes arguments in
study of cascades and in the study of the other type
branching aggregates. In the case of polymers and diffus
limited aggregates, the excluded volume effect as a g
metrical constraint causes geometrical correlations in
systems, and this can affect the actual structure, increa
the radius of gyration and decreasing the fractal dimens
@9–15#. But in the simulation of collision cascades the targ
was supposed to be amorphous; furthermore, there wa
restriction for the distance of the vacancies belonging to
ferent branches of the cascade, and the vacancies formin
cascade were supposed to be pointlike objects. It follows
there was no excluded volume effect included in our sim
lations. In the cascades geometrical correlations arise f
other reasons, namely, because of the overlapping of the
cascades.

Recently, based on a Flory-type theory, Family poin
out @11# that the random branching fractals can have o
three possible equilibrium shapes in the presence of g
metrical correlation, and he classified these objects into
tended, compensated, and collapsed states. It is shown i
present paper that decreasing the parameter of the pote
m from 1 toward 0, the system goes through these state
the evolution. Thus varyingm as a control parameter a tran
sition takes place in the cascade from an open-branc
structure toward a compact shape, the fractal dimension
ing equal to the dimension of the embedding space.

The outline of the remainder of this paper is as follows.
Sec. II, the construction of the deterministic cascade mo
the concept of the self-similarity dimension and fractal
mension is briefly reviewed, and numerical results are p
sented for the fractal dimension of the vacancy distributi
We compare the fractal dimensions obtained numerically
the corresponding self-similarity dimensions. To understa
the reason of the discrepancy between them in Sec. II
Flory–de Gennes-type mean-field approach is establis
and at the end the spike condition of Ref.@5# is revisited.

II. SELF-SIMILARITY DIMENSION,
FRACTAL DIMENSION

In a self-ion collision cascade, where the projectile a
the target atoms are the same, the scattering angle falls
-
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tween 0 andp/2. The geometrical model of self-ion colli
sional cascades was established by Cheng, Nicolet,
Johnson as an average cascade for the case of the intera
potential Eq.~1!. This model is a deterministic one, which
constructed by allowing the single valuep/4 of the scattering
angle solely for all the collisional generations~Fig. 1!. This
way a so-called fractal tree is constructed which is rigorou
self-similar up to the scale of the entire system, with t
similarity ratiog being the ratio of two successive branch
in the tree. This construction is based on the fact that in
hard sphere approximation of the scattering process the
pectation value of the particle energy~scattered and recoiled!
is given by Ē51/2E ~which belongs to thep/4 scattering
angle! and the mean free-flight pathLkv between two suc-
cessive collisions has the simple energy depende
Lkv5KE2m (K is energy independent!. Thus the average
cascade might be substituted by a deterministic one, with
similarity ratiog5(1/2)2m being the ratio of two successiv
branches at the scattering anglep/4 @5#.

Let us suppose thatN(r ) boxes of sizer are required to
cover this deterministic tree in thed-dimensional embedding
space. Changing the scale of the observation togr , N(gr )
boxes are needed to cover the object. Because of the
similarity we obtain

N~gr !52N~r !5g2D0N~r !. ~2!

This means thatN(r ) is a homogeneous function ofr with
the degree of homogeneity2D0 where D05 ln2/ln(1/g).
D0 is called self-similarity dimension@5#. Substituting the
value ofg in the 3d case we obtainD051/2m, depending
solely on the parameter of the interaction potential.

From the above argument it follows that the number
covering boxes varies asr2D0 with the resolutionr , and the
number of elements of the object within a sphere of rad
R must scale asRD0. The crucial point to be stressed here
that the above treatment, leading to the self-similarity dim
sion, considers independently all the elements of the casc
but neglects the geometrical correlations, and the poss
overlapping of different parts of the cascade. That is why

m, 1
6 the self-similarity dimensionD0 can even exceed th

dimension of the embedding spaced, and the radius of gy-
rationRN calculated from the relationRN;N1/D0 underesti-
mates the actual value ofR for a givenN.

We studied the structure of the vacancy distribution
cascades using MC simulation, so we had random geom
cal objects. In this case the fractal dimensionD is defined
through the scaling behavior of the total number of the
canciesN as a function of the radius of gyrationRN , namely,
N;RN

D The radius of gyration is a measure of the line
extension of the cascade, defined as the averaged distan
the vacancy pairsr i j in the cascade,

RN
25

2

N~N21! (i, j

N

r i j
2 . ~3!

The number of vacancies and the radius of gyration are fu
tions of the bombarding energy. That is why we perform
numerical simulations over a wide range of the bombard
energy for eachm value to vary the number of vacancies f
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1510 55F. KUN AND G. BARDOS
the determination of the fractal dimension. The fractal
mensionD was extracted from the form

N;^RN&D, ~4!

where the bracketŝ•••& denote the average over many ca
cades containing the same number of vacanciesN.

Numerical simulations were performed in 2d and 3d in a
wide range of the parameterm. In 3d for the case of the
interaction potential Eq.~1! the scattering cross sectio
ds5CE2mT212mdT was used for the simulation, wher
E is the kinetic energy of the moving particle andT is the
transferred energy during the scattering process. In 2d we
constructed a toy model with the scattering cross sec
ds5KE2m/2T212m/2dT. In all the simulations particles
were stopped when their kinetic energy was smaller tha
eV. For the 2d cascade model one can also construct a s
stituting deterministic fractal model, but its self-similari
dimension is different from the three dimensional on
namely,D051/m. Using this toy model in 2d we could
verify our Flory–de Gennes-type theory, which was ori
nally derived for the three-dimensional case. Figure 2 sho
examples of simulated cascades in 2d. For further details
about the MC simulation of collision cascades in the fram
work of the BCA model, see Refs.@17,18#.

FIG. 2. Simulated cascades in the 2d model at two different
values of the parameterm, ~a! m50.5 and~b! m50.85. The arrow
indicates the point where the bombarding particle penetrated
solid, and the fat line shows its path. The solid is supposed to
amorphous and infinite, thus the backscattered particles in~a! can-
not leave the solid. For decreasingm the structure of the cascad
becomes richer. Since the number of subbranches is increa
they tend to overlap each other.
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5
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The comparison of the fractal dimensionD(m) extracted
from the numerical data to the self-similarity dimensio
D0(m) can be seen in Fig. 3 for 2d and 3d. In 2d there is
agreement betweenD(m) andD0(m)51/m only in the limit
m→1; for decreasingm the deviation of the two functions is
increasing. The curve ofD(m) is composed of two distinc
smooth parts in them intervals 0.6,m,1 andm,0.52,
with a transient regime in between, 0.52,m,0.6.

The 3d case is more complicated.D(m) is composed of
three distinct regimes. Form.1/3 there is good agreemen
betweenD(m) andD0(m)51/2m. For m,1/3 there is an
increasing deviation between the two functions for decre

ing m. In them, 1
3 region one can distinguish two furthe

smooth parts ofD(m) in the intervals ofm 0.2,m,1/3 and
m,0.18, with a sharp transition in the vicinity ofm50.19.

III. FLORY –DE GENNES TYPE MEAN-FIELD
APPROACH

If we want to work out a mean-field approach for collisio
cascades, we face two problems: First, similarly to the c
of diffusion-limited aggregation@12–15#, there exists no free

he
e

ng,
FIG. 3. Comparison of the fractal dimensionD(m) extracted

from the MC data to the self-similarity dimensionD0(m). The
theoretical calculations of the fractal dimension in the extended
~8! and compensated Eq.~9! states are also shown.
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55 1511FRACTAL DIMENSION OF COLLISION CASCADES
energy in the conventional meaning of the term—there ex
no attractive or repulsive interaction between the vacan
forming the cascade. Nevertheless, this is not a real prob
since there exists a well-defined probability for the format
of any cascade of any given configuration which can
found by many repetitions of the cascade process, and
long as the asymptoticN→` properties of a single cascad
are the same as this ensemble average, the use of a Flor
Gennes argument should be valid. The free ene
F(R,N), which we estimate, is in fact to within a consta
term simply the negative of the logarithm of the total pro
ability P(R,N) for the formation of any cascade ofN vacan-
cies with radius of gyrationR, or P(R,N);exp@2F(R,N)#.

Furthermore, for a Flory–de Gennes-type argument,
essential properties of the cascade itself are required. Th
first we have to consider the basic properties of the forma
of a collision cascade.

Basically, the cascade is composed of subcascades.
subcascades are generated by the recoiled atoms. If we
the parameter of the potentialm from one toward zero, the
probability of displacement will be increased, and the s
cascades will contain more and more vacancies. Thus f
certain value ofm there will be so many vacancies in th
structure that the subcascades tend to overlap each other
idea is that the reason for the discrepancy between the m
sured fractal dimension and the self-similarity dimension
that there are geometrical correlations in the structure du
the overlapping of the subcascades, and this is not taken
account in the derivation of the self-similarity dimension.

The notion of the upper critical dimension used in t
study of geometrical structures is analogous to the crit
dimension of the thermodynamical systems. The critical
mensiondc54 is the Euclidean dimension above which the
mal correlations in a critical system become unimporta
and the critical exponents take their mean-field values.
collision cascades the upper critical dimensiondu is the Eu-
clidean dimension above which the overlapping effect
negligible, and the fractal dimension is equal to the se
similarity dimensionD5D0 .

The average density of a nonintersecting cascade
r0;RN0

D02d . If some parts of the cascade overlap each oth
the total number of intersection points would b
Rdr0r0;RN0

2D02d ; this would be the number of particle
particle contacts. It follows that the upper critical dimensi
is du52D0 for a cascade having a self-similarity dimensi
D0 . If d.du52D0 the self-intersections are negligible
Now one can explain the deviation ofD andD0 observed in
Fig. 3 in 2d and 3d. The self-similarity dimensionD0 de-
pends onm, which is why du also hasm dependence. In
3d, whilem is greater than13 , the upper critical dimension is
smaller than 3, i.e.du,d. The simulations showed that i
this m regionD;D0 , as we expect from the above arg
ments. In the Family classification scheme this state of r
dom fractals, when geometrical correlations are negligible

called the ideal state. Ifm, 1
3 , then du.d and the self-

intersections become important, resulting inD,D0 . In 2d
we obtain du52D0>d52; there is equality solely for
m51 ~ideal state! . Thus the overlap has a dominating rol
there is agreement betweenD andD0 only in the limiting
case ofm51, but form,1 we see always deviation.
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The Flory–de Gennes approach is based on finding
most probable conformation of an object from an appro
mate free energyF(R,N). The free energy is a sum of th
‘‘elastic’’ and ‘‘repulsive’’ terms @11#. The elastic free en-
ergy ~i.e., the entropic term! tends to make the cluster radiu
RN equal to its radiusRN0 in the ideal state where there a
no self-intersections. The elastic free energy is written

Fel5
RN
2

RN0
2 . ~5!

This term is assumed to be the same for any random st
ture @11#. The repulsive part of the free energy takes in
account the geometrical correlations caused by s
intersections. It is proportional to the number of partic
particle contacts, i.e.,RN

drr, wherer5N/RN
d is the density

of the object@11#. Thus for the repulsive part we obtain

F rep5A
N2

RN
d . ~6!

~This is a mean-field-type approach in the sense that the
ements of the fractal are spread over a volumeRN

d , neglect-
ing the possible density fluctuations.! At the beginning let us
suppose thatA is constant, and independent ofN. Minimiz-
ing the total free energyF,

F5Fel1F rep5
RN
2

RN0
2 1A

N2

RN
d , ~7!

with respect toRN , keepingRN0 andN fixed, and using the
definition of the fractal dimensionN;RN

D , we obtain

D5
21d

21~2/D0!
. ~8!

This expression ofD has two important features. First,
strongly depends on the embedding dimensiond and, sec-
ond, if d52D0 , we obtainD5D0 , in agreement with our
above upper critical dimensiondu52D0 . If d.du5(2D0)
the repulsive part inF is negligible, and the elastic part de
termines the structure leading toD5D0 . In the Family clas-
sification scheme this state of random fractals is called
extended state, because this is the most ramified pos
conformation of a random fractal in the presence of g
metrical correlations. In Eq.~8!, D has m dependence
throughD0 . In Fig. 3 one can see that the predicted curve
the fractal dimension in the extended state Eq.~8! is in good
agreement with the measured fractal dimension in 2d for
0.6,m and in 3d for 0.2,m,1/3.

If we decreasem in the extended state, we reach a po
where the multiple overlapping of the subcascades occ
leading to a more compact shape. It can be simply sho
that for the object having self-similarity dimensionD0 the

critical dimension of the multiple overlappingdu
m5 3

2D0 . If
the embedding dimensiond is smaller than the critical di-
mension of the multiple overlapping, the presence of
multiply overlapped regions can increase the fractal dim
sionD, and we have to modify our argument leading to E
~8!. Let us suppose thatA depends onN asA;N2x. It can
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1512 55F. KUN AND G. BARDOS
be interpreted as a kind of screening of the particle-part
‘‘repulsion,’’ which is why, in the Family classification
scheme, this state of random fractals is called a compens
state. The value ofx can be determined from the requireme
that the repulsive part of the free energy should be neglig
if d.du

m . For x we obtainD0(22x)5du
m , and substituting

du
m5 3

2D0 we havex50.5. For the fractal dimension, usin
the same procedure as above, we obtain

D5
21d

22x1~2/D0!
, ~9!

which depends onx. The appearance ofx in the denominator
gives rise to increment of the fractal dimension comparing
the extended state. Figure 3 shows the comparison of
fractal dimension in the compensated state to the MC fra
dimensions. Good agreement is observed in 2d for
m,0.52 and in 3d for m,0.18. For decreasingm in the
compensated state, the fractal dimension increases up t
dimension of the embedding space, resulting in a spa
filling compact shape of the cascade.

The overlap of subcascades play an important role in
creation of small amorphous zones in the target. An am
phous zone is formed when either the deposited energy
sity or the local fractional damage exceeds a critical val
This separates the thermal and displacement spike conc
An unexpected nonlinear dependence of the damage on
deposited energy was found experimentally; see, e.g.,
@16#. The experimental data could be well explained with t
assumption of cascade overlap.

At high enough recoil density it becomes possible that
moving particles can collide with each other, and not o
with the stationary target atoms. These regions are ca
thermal spikes, where the majority of atoms are tempora
in motion, giving rise to thermalization. This may occur
the final stage of the cascade evolution. In an actual cas
the parameterm of the effective interaction potential is
function of the kinetic energy of the moving particle; e.g.,

the keV energy rangem5 1
2 is a fair approximation, while in

the lower eV rangem< 1
6 . Cheng, Nicolet, and Johnson pro

posed a condition for the thermal spike formation based
the fractal nature of collision cascades. That is, a ther
spike is formed when the self-similarity dimensionD0 of the
cascade reaches the dimension of the embedding spaced @5#.
In the above 2d and 3d models, this occurs atm50.5 and
0.1666, respectively.

Since the self-similarity dimensionD0(m) and the fractal
dimensionD(m) of the cascade differ considerably, we ha
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to reconsider the above condition. The densityr of the dis-
placed atomsNc with respect to the total number of targ
atomsNa in the cascade region is

r5
Nc

Na
;RD~m!2d;Nc

[D~m!2d]/D~m! ~10!

whereD(m) is our MC measured fractal dimension, andR
denotes the radius of gyration. It has been shown above
the measured fractal dimensions have a so called trans
regime in the vicinity ofm50.18 and 0.52 in 3d and 2d,
respectively. These regimes are characterized by the fas
crease ofD(m), which entails that at a fixedNc value r
rapidly increases, and the cascade volume is a rapidly
creasing function ofm, indicating a kind of collapse of the
cascade tree. Thus we can identify these points as the oc
rence of high density spikes. Our characteristicm’s are very
close to those of Ref.@5#. The difference is that the fracta
dimension still remains smaller than the embedding dim
sion,D;2.4 in 3d andD;1.6 in 2d.

IV. CONCLUSION AND OUTLOOK

In the present paper we studied the geometrical struc
of the vacancy distribution in collision cascades. Based o
Flory–de Gennes-type theory for the fractal dimension,
established an explicit relation of the typeD5D(D0 ,d). It
was shown that the parameter of the interaction potentiam
plays the role of a control parameter. For decreasingm a
transition takes place in the cascade from an open branc
structure, through the extended and compensated state
ward the space-filling compact shape. The predictions of
formulas are in good agreement with the MC results.

It was reported by several authors in the literature th
due to the change ofm during the cascade evolution, a
actual collision cascade may be composed of subsets
locally different fractal dimensions~see, e.g., Refs
@1,2,5,7,8#!. To analyze structures which consist of a hiera
chy of subsets~density fluctuations! with a spectrum of frac-
tal dimensions the~geometrical! multifractality gives a natu-
ral framework@19#. Further investigations in this directio
are needed.
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